Стены жилых и общественных зданий из сборных элементов

1 стр. из 1

Современный взгляд на экономику России предполагает снижение энергозатрат во всех областях жизнедеятельности, в том числе и при строительстве жилых и общественных зданий. Этот взгляд нашел свое отражение в современных строительных нормах (СНиП 23-02-2003 "Тепловая защита зданий"). В результате, Типовые ограждающие конструкции, а, соответственно, и вообще Типовые серии жилых домов, а также существующая база стройиндустрии стали невостребованными. В то же время опыт строительства крупнопанельных зданий, накопленный в 90-е гг. прошлого века, показал их эффективность, возможность быстрого и качественного возведения зданий в зимнее время года, что особенно важно для условий Урала и Сибири. Для сохранения отработанных на практике серий жилых домов и общественных зданий стройиндустрии требовалось разработать стеновые конструкции, сохраняющие опалубочные размеры, систему соединения с другими конструктивными элементами, основы технологии, при значительном увеличении теплосопротивления.

Новые теплотехнические требования при традиционно использующемся на предприятиях стройиндустрии наборе материалов, как правило, исключают использование однослойных конструкций. Проблема решается, если конструкция стены становится многослойной, обычно трехслойной. Внутренний и наружный слои стены - пластины из прочного материала, и средний слой - утеплитель. Важным элементом конструкции является способ соединения внутреннего и наружного слоев стеновой панели, который в значительной степени определяет напряженно-деформированное состояние стеновой панели, способ ее расчета, методику испытания. По способу соединения наружных слоев стеновые панели можно разделить на три конструктивных типа: 1) панели с жесткими контурными ребрами; 2) панели с дискретными жесткими шпонками; 3) панели с использованием гибких связей.

Работа многослойных конструкций существенно отличается от работы однослойных, особенности работы многослойных конструкций в достаточной мере не исследованы. Несмотря на то, что разработка таких конструкций в связи с необходимостью решения задачи энергосбережения актуальна, необходимые для этого исследования не обеспечиваются ни на федеральном, ни на региональном уровне.

До последнего времени исследования работы многослойных стеновых панелей, разработка конструкций стен, рабочих чертежей в ОАО институт "УралНИИАС" выполнялись, в основном, за счет средств заказчиков, а иногда и с его участием. Ограниченные возможности заставляли проводить исследования, особенно экспериментальные, как проверочные. При этом глубина и широта исследований были ограничены. В ОАО "УралНИИАС" накоплен значительный опыт проектирования крупноразмерных стеновых конструкций. Разработаны (при разной степени участия заказчика) стеновые панели серии 97 (г. Первоуральск), серии 141КУ (г. Каменск- Уральский), стеновые блоки для серии 81 (г. Полевской), стеновые панели серии 137 (по заказу и при участии АО "КПД" г. Екатеринбург) и блоки домов серии 439 (УКС Уралмаша, г. Серов), стеновые панели серии 121 (Верхне-Тагильский комбинат строительных конструкций), стеновые панели серии 1.030.1-1 (ООО "Бетам" г. Новоуральск, Березовский завод строительных конструкций), стеновые панели серии 111-137 (г. Артемовский). Почти все упомянутые разработанные конструкции в настоящее время изготавливаются на предприятиях стройиндустрии, используются в строительстве. Наблюдения за конструкциями показывают удовлетворительные результаты.

Широкий спектр сборных стеновых конструкций, проработанных в ОАО "Урал НИИАС", дал множество конструктивных решений, примеры использования при производстве конструкций из тяжелого бетона, керамзитобетона, вермикулитобетона, полистиролбетона. Одновременно был определен круг задач, решение которых необходимо для дальнейшего совершенствования конструкций. Отдельные результаты, полученные нами при исследовании напряженно-деформированного состояния стеновых панелей, представляются интересными и могут быть предложены для обсуждения.

Ниже, в качестве примера, рассматриваются конструкции стеновых элементов, обеспечение их прочности и долговечности, особенности изготовления, оценка теплотехнических характеристик.

При проектировании конструкция может быть условно разделена на две части: внутренний слой, который обеспечивает восприятие нагрузок, общую устойчивость здания, через который обеспечивается связь стеновых конструкций с остальными элементами здания, и наружный слой, который навешивается на внутренний, не участвует в обеспечении общей устойчивости и прочности здания, который может быть отремонтирован, даже полностью снят без ущерба для прочности здания.

Внутренний слой работает практически в обычных условиях, его проектирование обеспечивается имеющимися нормативными материалами. Особенностью работы наружного слоя является его малая тепловая инерция, температура соответствует температуре наружного воздуха со всеми колебаниями, периодически конденсируется влага. В этих условиях требования морозостойкости к наружному слою должны быть повышены, при проектировании необходимо учитывать усилия от температурных воздействий. Для наружного слоя в опытных панелях применялись железобетон, керамзитожелезобетон, армированный полистиролбетон. Толщина наружного слоя должна обеспечить огнестойкость и сохранность арматуры, в силу этого она составляет 60-75 мм при величине защитного слоя >30 мм. Подобранные составы бетона наружного слоя обеспечивают его морозостойкость F 150-200.

Связь внутренней и наружной пластин может быть осуществлена через жесткие ребра, точечные шпонки или посредством гибких связей. Как показывает эксперимент, в передаче усилий от наружной пластины к внутренней участвуют как связи, так и утеплитель, однако работа утеплителя как несущего элемента, с учетом пластических деформаций и деформаций ползучести, должным образом не исследована, поэтому в расчетах она не учитывалась.

В большинстве упомянутых случаев в качестве связующего элемента использовались жесткие бетонные связи, работающие без участия утеплителя и защищающие арматуру слоем бетона. Для конструкций толщиной 400-600 мм связь слоев осуществлялась протяженными вертикальными ребрами. Для конструкций толщиной 350 мм предусмотрены бетонные шпонки. Для конструкций меньшей толщины приходится использовать гибкие связи. К материалу связей, работающему в условиях переменной температуры, периодического увлажнения, на границе щелочной (бетон) и слабокислой (утеплитель) сред, должны предъявляться очень жесткие требования. По заданию Бийского завода стеклопластиков были проведены исследования стеклопластиковых связей.

Работа многослойной конструкции на температурные воздействия существенно отличается от такой же работы однослойной: если преобладающей формой деформации однослойной конструкции является изгиб, то для многослойной со слабым средним слоем - сдвиг по слою утеплителя. Жесткие связи при температурных воздействиях работают в условиях сдвига и возникающего при этом отрыва, соответственно они должны быть и законструированы. Протяженные ребра армируются плоскими каркасами с поперечными стержнями, препятствующими отслоению ребра от внутреннего и наружного слоев. Шпонки размещаются так, чтобы в направлении действия гравитационной нагрузки усилия от температурных деформаций не возникали (по одной горизонтальной линии посередине высоты панели), они армируются каркасом, воспринимающим поперечную силу и момент в рабочем (вертикальном) направлении.

Жесткие связи работают при знакопеременных многократно повторяемых температурных перемещениях величиной порядка 1 мм. Ситуация усугубляется тем, что расчетная арматура анкеруется в достаточно тонких пластинах наружного и внутреннего слоев. В особо жестких условиях работают относительно слабые бетонные шпонки. Все это обусловило необходимость постановки эксперимента на специальных образцах натурных размеров (фрагмент панели с двумя шпонками) с одновременным приложением нагрузки от наружной пластины и немногократно повторных перемещений от воздействия температуры. В пределах заданных 50 циклов нагружения все процессы стабилизировались, каких-либо неблагоприятных изменений не отмечено, т. е. эксперимент подтвердил надежность принятых решений. Работа шпонок и протяженных ребер для всех разработанных конструкций проверялась также на натурных образцах одиночными загружениями.

Средний слой во всех случаях запроектирован из пенополистирола марки ПСБ-С, как наиболее эффективного, надежного и доступного материала. Однако известные нам данные по его долговечности получены для температурно-влажностных режимов, отличающихся от реальных. Выполненные нами испытания, моделирующие условия эксплуатации утеплителя в стене, показали, что долговечность пенополистирола в стенах составляет не менее 25-30 лет.

Утеплитель снаружи и изнутри защищен бетонными пластинами толщиной не менее 60 мм, со стороны оконных и дверных проемов предусмотрен защитный слой бетона той же толщины. Это исключает возгорание пенополистирола при воздействии огня. При повышении температуры до 90-100 °С происходит его сухая возгонка, что в дальнейшем будет требовать ремонта локальных участков, но препятствует распространению огня. Вид и характеристики бетона защитного слоя со стороны проемов подбираются из технологических соображений и из условий обеспечения требуемого теплосопротивления.

В многослойных стеновых конструкциях, представляющих собой комбинацию тонкослойных элементов, не в полной мере исследованы особенности анкеровки закладных деталей и монтажных петель, не отраженные в известных методиках расчета. Для всех конструкций работа этих элементов проверена экспериментально.

Сами тонкослойные элементы достаточно деформативны. При транспортировании и любых перемещениях их упругие деформации приводят к появлению на границах слоев трещин расслаивания, которые лишают конструкцию соответствующего товарного вида. Поэтому, хотя такие деформации не являются опасными, в конструкциях приходится предусматривать специальные связи. Проверка запроектированных конструкций при транспортировании (в том числе из г. Екатеринбурга в г. Тюмень), показала удовлетворительные результаты.

Стеновые панели или крупноразмерные блоки являются частью стенового ограждения. При проектировании этих элементов большое внимание уделялось узлам сопряжения сборных элементов друг с другом и с примыкающими конструкциями. Требуемые теплотехнические характеристики обеспечивались для стенового ограждения в целом, с учетом решения узлов.

Работа конструкций при эксплуатационных воздействиях во всех случаях проверялась экспериментально. В первую очередь исследовались специфические вопросы, определяемые многослойным решением. Для стен из крупных блоков исследования проводились на фрагментах стен, позволяющих рассмотреть особенности совместной работы многослойных элементов.

Кроме исследования работы конструкции стеновой панели и ее отдельных элементов при проектировании конструкций учитывалась необходимость жесткой увязки конструктивного решения с технологией изготовления конструкций при многочисленных ограничениях, накладываемых существующей бортоснасткой, оборудованием, привычными приемами работ. Для отдельных конструкций разработан технологический регламент. Технологическим вопросом, общим для всех конструкций, является укладка и фиксация утеплителя. Решение этого вопроса оказалось возможным или путем установки специальных фиксирующих элементов, или использованием бетонных смесей различной подвижности при разных способах уплотнения.

Теплотехнические характеристики конструкций проверялись расчетным и экспериментальным методами. Для оценки теплотехнических параметров неоднородных конструкций в институте разработана специальная программа расчета на ЭВМ, основанная на построении температурного поля фрагмента. Однако существующие подходы, хотя они и используются повсеместно, дают для неоднородных конструкций, как показывают наши исследования, заниженные результаты. Поэтому все разработанные конструкции, помимо расчета, исследованы экспериментально на образцах натурных размеров. Исследовались не только отдельные конструкции, но и фрагменты ограждения с узлами сопряжения и примыкающими элементами.

В настоящее время институт продолжает работы в направлении совершенствования ограждающих конструкций. Сейчас ведутся работы по проектированию стеновых панелей для серии жилых домов 141 СВ. Стеновые панели толщиной 280 мм предусмотрены трехслойными с гибкими стеклопластиковыми связями, при этом используются результаты наших исследований таких связей. Уже выполненные испытания натурных конструкций подтвердили работоспособность этих конструкций. Другим направлением работ в данном направлении являются исследования свойств конструкционного полистиролбетона как эффективного заменителя тяжелого бетона или керамзитобетона в сборных элементах стенового ограждения.

Основные выводы:
1. Трехслойные стеновые панели являются наиболее перспективными сборными конструкциями, которые удачно сочетают в себе высокую прочность, жесткость, трещиностойкость и необходимое теплосопротивление при незначительной толщине.
2. Существующие в настоящее время способы расчета трехслойных стеновых панелей требуют совершенствования на основе изучения их напряженно-деформированного состояния, что позволит снизить их материалоемкость, повысить эффективность и надежность.
3. Исследование работы трехслойных стеновых панелей, создание методов их расчета требует системного подхода, который возможен при постоянном финансировании - региональном или федеральном.
4. Совершенствование трехслойных стеновых панелей требует применения при их изготовлении новых материалов, свойства которых также должны изучаться.
5. В настоящее время существуют новые базовые решения трехслойных стеновых панелей, удовлетворяющих требованиям современных теплотехнических норм, разработанных в ОАО институт "УралНИИАС", которые успешно применяются в строительстве и могут послужить основой для создания более совершенных конструкций.

Дата: 01.06.2004
В. В. Чижевский, В. А. Никишкин, Л. Ю. Медведева
"СтройПРОФИль" 4 (34)
1 стр. из 1


«« назад

Полная или частичная перепечатка материалов - только разрешения администрации!