|
|||||
1 стр. из 1 Несмотря на то, что пьезоэффект был открыт еще в XIX в., а со 2-й пол. XX в. активно развивались теория и технология создания пьезокерамических материалов, считается, что пьезокерамика — один из перспективных материалов XXI в. Основанием для такой точки зрения является то, что замечательные свойства, присущие пьезокерамике, до сих пор не в полной мере востребованы наукой, техникой и технологиями. Активное использование пьезокерамики в различных областях началось в 60–70 гг. XX в. Достаточно хорошо были изучены и использованы свойства пьезокерамических датчиков и пьезокерамических преобразователей. В настоящее время пьезокерамика широко используется для ультразвуковой диагностики в медицине, авиационном и железнодорожном транспорте, энергетике, нефтегазовом комплексе; силовая пьезокерамика — в ультразвуковой сварке, чистке поверхностей, нанесении покрытий, сверлении и т.д. В то же время пьезокерамика еще недостаточно используется для создания генераторов, актюаторов и в комбинированных системах. Современные же требования по энергосбережению, миниатюризации, адаптивности к компьютерным системам управления и контроля все чаще заставляют производителей техники и оборудования обращаться к поиску тех или иных технологических решений с помощью пьезокерамики. В результате появляются новые типы пьезокерамики, создаются новые и совершенствуются известные пьезокерамические элементы и компоненты. Пьезоэлектрические элементы идеальны при использовании в качестве электромеханических преобразователей. Они достаточно широко используются для изготовления пьезокерамических компонентов, узлов и устройств. Применение пьезокерамических элементов в изделиях коммутации электрических сигналов привело к качественно новому уровню производства коммутационных изделий: кнопок, клавиатур, выключателей, переключателей и интегрированных изделий на их основе. Пьезокерамика обладает многими достоинствами: С 1990 г. началось массовое производство пьезокоммутационных изделий зарубежными фирмами. В России первые опытные изделия появились еще в 1984–1985 г., но из-за низкого качества собственных пьезоэлектрических элементов и невозможности покупки их за рубежом эта технология не получила должного развития. В настоящее время производителями пьезокоммутационных изделий являются зарубежные фирмы: PSD (США), T.H. (Швеция), ALGRA (Швеция), SHURTER (Германия), Baran Advanced Technologies (Израиль). В России ООО «ВНИИР-Прогресс, на базе разработок Всероссийского научно-исследовательского проектно-конструкторского технологического института релестроения с опытным производством. Достаточно простыми средствами достигнуты высокая надежность; небольшие габариты; современный дизайн; возможность работы в химически агрессивных средах, в воде, песке, металлической стружке; искробезопасная бесконтактная коммутатация с количеством коммутационных циклов, не имеющая аналогов (50 млн. циклов); широкий диапазон рабочих температур, токов и напряжений; возможность антивандального исполнения; низкая стоимость. В отличие от существующих сенсоров, емкостных, индуктивных и др., пьезокнопки не требуют дополнительного источника питания. Основные технические характеристики Принцип работы пьезокнопки Принцип работы основан на прямом физическом пьезоэффекте, т.е. при давлении на пьезоэлемент происходит его деформация. И на его обкладках (электродах) возникает напряжение, достаточное для надежного управления бесконтактными транзисторными ключами. Конструкция пьезокнопки На обратной стороне корпуса кнопки, который может выполняться из металла или пластмассы, установлен пьезоэлемент (3). Напряжение с его электродов, снимаемое токосъемником (4), подается на печатную плату (5), на которой смонтирована электронная схема бесконтактных транзисторных ключей, коммутирующих внешнее напряжение (ток) в нагрузке. Вся конструкция залита герметиком (6), а выводы (7) могут быть выполнены разъемом, проводами или кабелем. Пьезокнопки функционально подразделяются на: Установочные размеры: диаметр от 16 мм до 40 мм с резьбой М16, длиной от 8 до 20 мм, в исполнении для наружной и внутренней установок на панель. Выводы выполняются стандартным кабелем, проводом или разъемом. Кнопки могут выполняться с тактильным эффектом. Интегрированные пьезокнопки Интегрированные пьезокнопки требуют дополнительного питания, но, вместе с тем, значительно расширены их функциональные возможности. Путем добавления дополнительной электроники можно получить многоканальную пьезокнопку со встроенными таймерами на включение или отключение и сложные циклически повторяемые программы, а с появлением дешевых программируемых микроконтроллеров появилась возможность создания программируемых и перепрограммируемых пьезокнопок. Стало возможным создание кнопок повышенной секретности с защитой от случайных срабатываний, специальных слайдкнопок, которые срабатывают при нажатии и движении пальца в определенном направлении, скорости и т. д. Функционально интегрированные пьезокнопки подразделяются на: К специальным относятся так называемые слайдкнопки — группа кнопок с общей мембраной позволяет создавать кнопки, которые включают нагрузку только при нажатии и перемещении пальца, в строго определенном направлении и, если нужно, и скорости (экстренное открытие дверей в самолете, электропоезде и других объектах, где нужно исключить ошибочное срабатывание). Напряжение питания кнопок — универсальное, от 9 до 24 В переменного или постоянного тока. Кнопка потребляет 1-2 миллиампера в режиме ожидания и до 10 миллиампер в режиме отработки программы. Выпускаются кнопки, не потребляющие энергию в режиме ожидания, что очень важно при батарейном питании. Также кнопки защищены от воздействия статического электричества. Имеется гальваническая развязка выходов с источником питания. При необходимости изготавливаются кнопки с защитой от перегрузки и короткого замыкания. Хранение программы при отсутствии напряжения гарантируется в течение 10 лет. Коммутационные параметры перечислены выше в основных технических характеристиках. Установочные размеры: диаметр от 16 мм до 40 мм с резьбой М16, длиной от 30 до 35 мм, в исполнении для наружной и внутренней установок на панель. Пьезоклавиатуры и панели Конструкция пьезоклавиатуры На листе металла химическим способом (анодированная фотопечать или металлофото), лазерной или механической гравировкой наносится рисунок клавиатуры или мнемосхема технологического процесса, а с обратной стороны расположены пьезоэлементы и электронные ключи, залитые герметиком. Выводы выполняются стандартным кабелем или разъемом. Конструктивно клавиатуры подразделяются: для внутренней и наружной установки, а также настольные или переносные, примером которых может быть компьютерная клавиатура с встроенным интерфейсом PS.2, USB и др. Принцип работы пьезоклавиатуры Принцип работы основан на прямом физическом пьезоэффекте. При прикосновении пальцем к рисунку на клавиатуре происходит деформация пьезоэлемента, и на его обкладках возникает напряжение, достаточное для надежного управления бесконтактными транзисторными ключами. Клавиатура не требует дополнительного источника питания. Высокая надежность достигнута за счет полного отсутствия движущихся частей и полной герметизации. В зависимости от схемы соединения клавиатуры могут быть матричными, с общим проводом и смешанной схемой соединения. Универсальные бесконтактные пьезопереключатели (командоаппараты) В корпус пьезоклавиатуры добавлен микроконтроллер с программой. При наборе кода доступа, который в дальнейшем можно изменять, потребитель может самостоятельно: Сфера применения бесконтактных пьезокоммутационных изделий Современный дизайн, небольшие габариты пьезокоммутационных изделий позволяют их внедрение как в офисе банка, так и на прокатном стане. Они пригодны для управления технологическими процессами с тяжелыми и особо тяжелыми условиями эксплуатации: наличие высокой влажности или воды, пыли, песка, металлической стружки, химически агрессивной среды, больших перепадов температуры, пажаровзрывоопасной среды. Возможно применение на предприятиях: Дата: 28.08.2008 С. З. Хондраш "НефтьГазПромышленность" 5 (41)
«« назад Полная или частичная перепечатка материалов - только разрешения администрации! |
|||||